STEM Interest: How Can I Help?

I have wanted to write something for quite a while but have not had the proper inspiration (or motivation). When in doubt, go with your recurring thoughts. For me, this includes interest in the STEM fields locally or globally via the internet.


I recently did a search for local STEM organizations that I could volunteer my time or efforts. Knoxville, however, is not really considered a STEM-Mecca. Actually, I did not find a single NPO focusing on science. This was not a huge shock, but it was a huge disappointment. I know I am not the only Ph.D.-strapped person in the area who could potentially help spread science literacy or interests.


In graduate school, my major professor did talks at local middle schools that we gladly went to so these students could see what an actual scientist looked like. We were an eclectic bunch just like the science community itself. We could tell the students enjoyed and appreciated our visits, and hopefully some of them will pursue a career in a STEM field. I now try to fuel interest in my own undergraduate classroom for my students. I’m not satisfied with my current reach and would love the opportunity to expand it. The best way to a future with progress and prosperity is through a logical and literate society.


I do my little blog with my little graphics and illustrations. What else can I do? I need to channel my passions for spreading the science in a focused and steady way. So, I need your help: help me help others.

The Microbiome: Can We Please Consider the Human Body an Ecosystem Now?

It has long been thought the type and amount of microbes using the human body as a home shape the way we live and behave. The microbiome as it is known is shown to have a greater and greater impact in our daily lives.

A new study published in Nature (paywall) provides evidence demonstrating the artificial sweeteners we all love and consume to control weight leads to increased blood glucose levels. How can something used to replace sugar in consumables raise the amount of sugar in the blood?

Like many other answers regarding human health, look no further than the microbiome. Consuming artificial sweeteners alters the composition of the intestinal microbes leading to a growing glucose intolerance. The researchers linked artificial sweetener use to altering metabolic pathways within the microbiome that leads to increased susceptibility to metabolic disease.

To verify their findings, researchers gave antibiotics to the mice used as models thus reversing the effects of artificial sweeteners. Results were also verified by using fecal transplantation in the mice to reverse glucose intolerance.

The Human Microbiome: Our Ecosystem

We already knew the microbes outnumbered our human cells 10 to 1 and that the microgenome outnumbered our human genome 100 to 1. The evidence is growing suggesting our normal flora govern more of our lives than we naively assumed for decades. We are not individuals but individual incubators for the microbial overlords that we could not live without. Just like other ecosystems, changing our lifestyles have a complicated effect on system as a whole. Small alterations to the microbiome can have major impacts and be the difference between health and disease.

Future posts will hopefully provide evidence demonstrating how we are shaped into individual ecosystems. Thank you, microbiome.


Graduate School Does Not Prepare Students to Teach Effectively

Graduate School is Great

Don’t get me wrong. I enjoyed most of my experience while in graduate school working towards my Ph.D. I was paid to fuel my personal curiosities about how bacteria make choices. It was a win-win in my opinion. I was contributing to the overall knowledge of the scientific community and making connections that I never would have dreamed of years before. I could safely say no one on the planet was investigating the same phenomena I was, so I held knowledge only I knew. Pretty amazing feeling. I read some article in Science Careers long ago about advice for graduate students. One nugget was that the student needed to become the expert of their project, not their advisor. I tried to make that my goal and knew I was succeeding when my advisor would ask my advice about observations she was making in the lab.

Graduate School is Good

Don’t get me wrong. Graduate school was not all a field of lilies. It was hard, very hard. Blazing trails and keeping up with all the latest research from around the world about my topic was daunting. Then, there was the preliminary exam (aka qualifying exam); six weeks of taking on an entirely different topic, becoming an expert, devising experiments to answer research questions, writing a full grant proposal, presenting to the department, and defending your ideas for hours is not for the faint of heart. However, the prelim (I had to go through twice) is like being thrown into the ocean as an infant and told to swim the English Channel. If you make it, you are a much better scientist for it. It was HARD, but I don’t regret all the effort it took.

Graduate School is O.K.

Working in the lab can be very time consuming. Many lab bosses expect the grad students to be in the lab 60 to 80 hours a week. I should have been in the lab more, I admit, but I also had a wife and a daughter the last couple years. I had a lot of expectations of me not only as a student and a training scientist but also as a husband and father. Only one of these four expectations was I an expert at after 25 years of schooling. Being spread so thin made each facet that much harder. Needless to say, my wife (and daughter, and in-laws, and parents, and brother, and the rest of the family, and friends, etc.) were very excited when I finally saw the fruits of my indentured labor.

Graduate School is Absolutely Horrible

Don’t get me wrong. I had opportunities to ‘teach’ students during graduate school. I taught a few semesters of lower-level biology lab sections early on. I enjoyed trying to make connections for the students. I remembered when it all came together for me and the light clicked. I wanted that so badly for my students; and much earlier in their academic career.

Now I am out of school with a degree I am very proud of. At what point in graduate school was I supposed to become an expert teacher? Much emphasis is towards shaping an independent scientist who can survive in the jungle, and rightly so. But, what about an emphasis on one of the tenets that come with many job descriptions those fledgling scientists would eventually end up with: instructing? No courses, no seminars. Am I missing something? Is the arena of instructing young minds preparing them for the future jobs we need them to take and excel at not important?

I am very fortunate. I have a faculty position now. I am an expert…but not at what I am expected to do, teach. I am a novice, an infant trying to very quickly consume as much information in teaching strategies and instructing styles that I feel I should have been exposed to in school. Do the science departments and education departments of our colleges and universities know of each other’s existence and absolute need for integration?

I want to be the best instructor ever. I want my students to get it every lecture/class meeting. I want them to appreciate the world around them and make logical decisions. Is that too much to ask? It is for the current state of a majority of graduate schools.


Academia as an Unwieldy Vortex

Vortex of Academia

 The safety of academia

In the fall of 2012, I left the comfortableness of the lab in which I had been nestled for 6 years. It was an exciting and terrifying time. I was not going the normal tract for a new Ph.D.; a post-doctoral fellowship. Are we not steered towards a career in academia? I was warned by several professors to make my choice wisely (and for good reason). My wife and I had a life in my town and the thought of uprooting for two to 8 years did not sound appealing. I was very fortunate to take a position as a science writer helping a federal department’s program in biological and environmental research. It was new territory for me, but I knew the opportunity was too great to pass up.

Exactly one year later, I found myself out of work due to reduction in force. I had never gone through such a thing. Those words when they were spoken to me gave me a sort of out-of-body experience, a nightmare really. It took weeks for me to come to grips fully of the immense toll it would take on my family.

Back to the applicant pool

Being a Ph.D. in a mid-sized market is a daunting thing. It seemed as if I was over-qualified or in the running with about 50 other sorry Ph.D.s for each position in which I applied. One part-time position became available as I was hitting the unemployment line as an adjunct professor at a local college. I was teaching ‘Health Science Research’. A great and appealing position if I knew exactly what health science research was. My wife was not as thrilled as I in this opportunity. Who knows, I could land a full-time position soon, I thought. I gladly took the position and kept searching for something permanent and life-sustaining. By early 2014, I had found a hand full of part-time spots to keep us afloat. I was looking several times a day at career sites and every other job portal for the biggest employers in the region. My search had grown to opportunities an hour a way from home. Academia, industry, government; it did not matter to me. I had mouths to feed.

Oh boy, what luck, er tragedy

My adjunct employer asked me to teach additional courses in the summer. However, this schedule overlapped with my wife going back to her position as an elementary school teacher. This meant we would have to pay childcare for a newborn. In other words, we would have to pay the equivalent of another small mortgage monthly for me to work. A catch 22 if ever there was one, but my boss knew my incredible urge to be taken on full-time.

A few weeks after regretfully declining the offer, I received an email on a Sunday morning from my adjunct boss. A faculty member in the Science Department was on life support after a ruptured aneurysm. I was asked to step in (in the middle of the quarter) and teach three additional classes starting the next day. I had no choice but to accept out of respect and duty. The next morning, I found out the faculty member passed away. I couldn’t be happy for my good fortune. How could I? His mother had lost her husband and son within 6 weeks time.

So, here I am stepping into a full-time role with two mid-term exams and a quiz my first week to prepare; not to mention hours of lectures to prepare with no slides to reference from previous quarters. I have not, and will not, complain about my circumstance. I think of his mother and sisters often.

Home Sweet Home

18 months after leaving the world of academia, I find myself thrown back into a forceful vortex. No time to stop and think about ivory walls or effective pedagogy. I’m treading the academic waters for a few more weeks. Going one lecture/class at a time trying to give the students my best efforts, for their sake. Don’t get me wrong, I want to become increasingly effective at teaching my students and getting them curious in biology. Just let me turn in final grades for this quarter first.

Storify: Scicomm needs a temple


Using HIV to Cure Leukemia: Mixed Emotions About the Claims

For those who don’t know, I teach a health science research course at a local college. I love teaching this class because I am allowed to give students a foundation in scientific inquiry and build upon this up to current topics in health science like personalized medicine and systems approaches. All this builds up to an article summary the students prepare based upon a journal article of their choosing.

Two of the students pairing up to present a summary of their paper showed me last night a video they found that accompanied the research they were excited about presenting [see below].

First, I was surprised the principal investigator, Carl June, when asked if he was curing cancer, said unequivocally, “Yes”. I understand this is a promotional video produced by GE, but June really took the bait.

I truly recognize the enormous potential this type of therapy has. The week before being shown this video by the students, I gave a short lecture about science and the media. The main point was to be skeptical of the message portrayed by the media. It appears, I need to revisit this subject.

This promotion of research goes beyond the “Hidden DNA Code” press release that went viral as part of the ENCODE project from the University of Washington. Not only was the wording sketchy (using ‘HIV’ to cure leukemia), but the lead researchers are touting curing cancer (leukemia in this case). A very good article about this entire subject can be found here. In small clinical trials, the therapy has found success thankfully. However, the trials have been very small thus far and we are dealing with cancer; the correct term is remission, not cure.

I urge everyone, please do not read medical breakthrough stories and go away with a warm fuzzy feeling. Please take an extra step and dig a bit deeper. You will find the warm fuzzy feeling is not for the present story you just read but from the optimism you (and everyone else for that matter) should feel about the stories to come in the future when the science has been thoroughly tested and the therapy is real.

For ‘Emma’ in the above video and only Emma, today that therapy is real.

My Journey into Science: Participation to Passion

I’ve always loved science. I even love the word. Those aptitude tests we all take in school also knew I loved the natural sciences. In high school, Biology came easy for me, and I took it all in (thank you, Mrs. Hill). It continued into my community college experience in Biology for Majors (thanks, Dr. Fleming). Then came my time at a big university where I even retook biology classes as electives because I loved the subject matter (thanks, Dr. Schwartz). As a pre-med, I was expected to take a lot of life science course work, and I gladly did. Then came Biochem, the upper-level weed-out class. I was young and immature so, needless to say, I did not take it too seriously. It showed in my grade.

At this time, science classes were still a set of facts needed to be memorized for the upcoming exam. No way to approach a life-long passion. The life sciences came easy and all the textbooks over the years made it seem easy. The textbooks laid out the facts in front of me; plain and simple. If I had a question, the answer was right there (after a gaze at the index pages). Biochem became my nemesis. I loved it, but it did not return the favor.

Then, it hit me (thanks, Dr. Koontz). These are not static facts. Everything is connected creating a mesh of life sustaining processes. The revelations did not stop there, however. I was fortunate enough to win a summer internship at the Oak Ridge National Laboratory working on hydrogen evolution from spinach photosystem I. This was my first lab experience…ever. The notion of science being easy and quick went out the window soon after beginning. Science, real science, was hard and time-consuming. Science was frustration and troubleshooting, and I loved it.

The only way to truly understand the essence of what science is and how discoveries are made is by performing the work necessary to obtain new knowledge. The discovery timeline needs to be emphasized in science classrooms. Discovery and innovation are not immediate. Hard work and perseverance are vital. I would love to start a page at Sci of Relief entitled Science Timelines. The truth is much more astounding than the myth of science being a series of Eureka! moments.