Combing the Earth One Genome at a Time: In Pursuit of “The Next Big Thing” in Sustainability

animated bacteria, cellulose, bioenergy
Illustration of Clostridium thermocellum cells (orange) on the surface of a cellulose fibril (multicolor)

There is one thing that can be said about scientists: they’re never satisfied…thankfully. Observation and curiosity leave them on a never-ending quest to understand Mother Nature and improve humanity. One great example of this is the field of alternative energy science. Through the efforts of the Bioenergy Research Centers (BRCs) and Joint Genome Institute within the U.S. Department of Energy‘s Office of Science, there is a perpetual search for Nature’s best metabolic machinery. This search requires thinking outside the box and sometimes outside your comfort zone. For example, last year researchers from the Joint BioEnergy Institute published findings that originated in the El Yunque National Forest in Puerto Rico, a rain forest and home to Enterobacter lignolyticus, a bacterium that is tolerant to ionic liquids (liquids with salts that are not crystaline, but are liquid). This discovery began with the observation that soil microbes at El Yunque have a high rate of organic decomposition and tolerance to osmotic pressure.

Another example are bacteria from the genus Caldicellulosiruptor that are able to degrade biomass, however, they live in extremely thermophilic environments like hot springs from New Zealand to Russia to Yellowstone. Researchers at the BioEnergy Science Center were able to isolate these microbes and start characterizing the enzymes responsible for degrading woody biomass into simple sugars.

Or what about  researchers at the Great Lakes Bioenergy Research Center essentially dissecting a leaf-cutter ant colony in Panama to examine its ecology; from the fungus the ants use as food, to the bacteria that help degrade the leaves. Or what about isolating microbes from termite guts or wasp guts?

Then there is the champion for raising scientific curiosities, Clostridium thermocellum which holsters woody biomass degradation factories attached to the outside of its cell membrane. These factories are known as cellulosomes.

How old are you? (The answer is not what you think)

My 4 year old daughter can tell you how old she is even though her concept of time is essentially nonexistent. She can’t wait to be “big”, which in her mind is 5 years old. However, the rest of us are not much better at answering the question about how old we are. Yes, we are correct about our legally recognized age, but we are way off on our natural age.

We’re all the same age…really old

Atomic level

Since everything is made up of matter, we all consist of atoms. These atoms all come together to make us who we are, but my daughters atoms are not 4 years old or even 4 billion years old. At some point shortly after the big bang, atoms came together thus forming the different elements (think periodic chart). Here we are 13.7 billion years later; all of us made of the same elements. This makes me shake my head when I think of nations going to war. We’re all made of the same elements, same matter. It doesn’t seem natural. With this argument, we are all really old at about 13.7 billion years old.

We’re all about the same age…really young

Cellular level

Humans consist of around 10 trillion human cells (excluding the 100 trillion microbial cells). These cells have a turnover rate that suggests each human consists of entirely different cells every 7 years. With this argument, we are all pretty young with no one older than 7 years old.

We’re all rentals…really short-lived

Since we’re all made up of the same atoms and these atoms have essentially been around forever, they have been used by other matter before us. And, most certainly, they will be used by matter long after we as humans are gone. Mother Nature sees us as atomic renters, but definitely not rent-to-own.

We’re all tenants…really big compared to our landlords

Something else I have been thinking about for a while now; almost everything we see or touch is completely covered with a thin layer of life, i.e. bacteria. They cover us. They cover our loved ones. They cover our…everything! Also, they have been around a lot longer than we have as species. We are just using the same space they are. Heck, we are a space they live! So, in this sense, they are allowing us to use this space as tenants. They are very nice landlords, too. Consider all the benefits we receive from their generosity (think microbiome).