Hooray for Failure! It’s Science’s way of telling you you’re not being creative enough

English: A diagram of a typical prokaryotic ce...
English: A diagram of a typical prokaryotic cell. This diagram, made in Adobe Illustrator, is an improved version of a similar diagram, Image:Prokaryote cell diagram.svg, which was also made by LadyofHats. Besides general appearance changes, this version adds plasmids and pili, and notes that DNA is circular. Latina: Diagramma cellulae naturalis prokaryoticae. Adobe Illustratore factaerat. (Photo credit: Wikipedia)
Schematical structure of a molecule of cyclic ...
Schematical structure of a molecule of cyclic di-GMP. The guanine (blue), ribose (red) and phosphate (green) have been bonded through dehydration. (Photo credit: Wikipedia)

I’m not a scientist at the bench anymore. My wife told me I had to stop playing and get a real job (a.k.a. graduate). However, I have very fond memories of my days studying chemotaxis. I will discuss that tomorrow in the second installment of My Tiny Highlight (MyTH) series. Bacteria, despite all modes of intimidation, do not follow our commands. They dance to the beat of a different drum, internal programming.  Following the scientific method is easy but hard. You can make observations all you want (in my case 6 and half years and over 40 hours of video), but describing why things with the cell are happening or how they happen is a process. Finding explanations for what you observe and designing experiments to test them teaches humility because inevitably the cells will prove you wrong.

There is not much bravado in science. Failure is much more common than success and I would not have it any other way. I learned ten times more from failure than success. My dissertation project was split into two main goals dealing with two different proteins within a single bacterium, let’s call them protein1 (due to embargo and not published yet) and Tlp1 (since one paper is already published). It took 4 years of mostly failure with P1 to open my eyes and look outside the box. Breakthrough! Tlp1 was more straight forward, at least I thought at first. I still failed to explain my observations for a few years. Once I started visualizing the inside of the cell, with all its organized chaos, I started to be more creative in my hypotheses. Ultimately, we discovered a sort of paradox to everything found in the literature about the bacterial second messenger cyclic-di-GMP (c-di-GMP). I can’t wait for it to be published.

Grad school taught me a lot. I learned that if you love what you do, it doesn’t seem like work. Most of all, I learned that failure is a good thing because it takes us outside the box which is usually where the correct answers are.

Leave a Reply